Glass Polyalkenoate Cements Designed for Cranioplasty Applications: An Evaluation of Their Physical and Mechanical Properties
نویسندگان
چکیده
Glass polyalkenoate cements (GPCs) have potential for skeletal cementation. Unfortunately, commercial GPCs all contain, and subsequently release, aluminum ions, which have been implicated in degenerative brain disease. The purpose of this research was to create a series of aluminum-free GPCs constructed from silicate (SiO₂), calcium (CaO), zinc (ZnO) and sodium (Na₂O)-containing glasses mixed with poly-acrylic acid (PAA) and to evaluate the potential of these cements for cranioplasty applications. Three glasses were formulated based on the SiO₂-CaO-ZnO-Na₂O parent glass (KBT01) with 0.03 mol % (KBT02) and 0.06 mol % (KBT03) germanium (GeO₂) substituted for ZnO. Each glass was then mixed with 50 wt % of a patented SiO₂-CaO-ZnO-strontium (SrO) glass composition and the resultant mixtures were subsequently reacted with aqueous PAA (50 wt % addition) to produce three GPCs. The incorporation of Ge in the glass phase was found to result in decreased working (142 s to 112 s) and setting (807 s to 448 s) times for the cements manufactured from them, likely due to the increase in crosslink formation between the Ge-containing glasses and the PAA. Compressive (σc) and biaxial flexural (σf) strengths of the cements were examined at 1, 7 and 30 days post mixing and were found to increase with both maturation and Ge content. The bonding strength of a titanium cylinder (Ti) attached to bone by the cements increased from 0.2 MPa, when placed, to 0.6 MPa, after 14 days maturation. The results of this research indicate that Germano-Silicate based GPCs have suitable handling and mechanical properties for cranioplasty fixation.
منابع مشابه
An Injectable Glass Polyalkenoate Cement Engineered for Fracture Fixation and Stabilization
Glass polyalkenoate cements (GPCs) have potential as bio-adhesives due to their ease of application, appropriate mechanical properties, radiopacity and chemical adhesion to bone. Aluminium (Al)-free GPCs have been discussed in the literature, but have proven difficult to balance injectability with mechanical integrity. For example, zinc-based, Al-free GPCs reported compressive strengths of 63 M...
متن کاملEffects of N-Vinylcaprolactam Containing Polyacids and Zirconia on Mechanical Properties of Commercial Glass Ionomer Cements
This study aimed to investigate the impact of N-vinylcaprolactam (NVC) and Nano-sized yttria-stabilized zirconia (YSZ), separately and simultaneously, on the mechanical properties of the commercial glass ionomer cements (GICs). Methods: The NVC is able to ameliorate the mechanical and surface properties of glass ionomers; however, its effect hasn’t been investigated in conjunc...
متن کاملEvaluation of Mechanical and Tribological Properties of Glass/Carbon Fiber Reinforced Polymer Hybrid Composite
Polymer matrix composites used in different industrial applications due to their enhanced mechanical properties and lightweight. However, these materials are subjected to friction and wear situations in some industrial and automobile applications. Therefore, there is a need to investigate the wear properties of polymer matrix composite materials. This article emphasizes the dry abrasive wear be...
متن کاملEvaluation of Calcium Fluoroaluminosilicate Based Glass Ionomer Luting Cements Processed Both by Conventional
Calcium fluoroaluminosilicate glasses (CAS) are used in the formulation of glass ionomer cements for dental applications. However, the cements obtained from CAS glasses were found to be radiolucent. In this study, the influence of substituting Zn, Sr and Mg for Ca of CAS glasses was investigated with respect to the structure and setting characteristics, mechanical properties, and radiopacity of...
متن کاملUltrasonically set glass polyalkenoate cements for orthodontic applications.
There is an accepted clinical requirement for a luting cement that can be command set upon satisfactory placement of an orthodontic appliance onto dentition. This work evaluates the suitability of ultrasound, imparted from a dental scaler, as a potential mechanism for achieving this. The net setting times and subsequent compressive strengths of a range of commercial and experimental glass polya...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016